
CNN solutions for Pixel-Level ID

Aaron Higuera (UH, US)

Piotr Płooski (WUT, PL)

Aidan Reynolds (Oxford, UK)

Andrea Scarpelli (APC, France)

Daniel Smith (BU, US)

Dorota Stefan (CERN/NCBJ, CH/PL)

Robert Sulej (FNAL/NCBJ, CH/PL/US…)

Leigh Whitehead (CERN, CH)

Support on Tensorflow from Lynn Garen and LArSoft team

 Outline

• what we are doing

• how, and what could be gained from common tools

• path forward

Pixel-level activity classification: basic idea

• Identify low-level features, independent from long range / full event context

• EM-like / track-like discrimination

• Michel electron activity identification

• Vertex identification & classification (interaction / decay ID, gamma conversion, …)

• Support standard reconstruction or additional input to higher level ML

• Several direct applications to physics & calibration

• Use raw ADC: no hit-related inefficiencies

Pixel-level activity classification: low level features

• …independent from long range / full event context

• limit the patch rage to the minimum: avoid effects of incorrect sim of inetactions

• there is still ionization shape (somewhat handled with drift downsampling)

 accurate detector sim (it was for LArIAT, may not be that easy for 3x1x1)

 or explore more GAN, VAE, …

• noise is also a factor, however easier to simulate or take from data

EM/track in ProtoDUNE: CNN combined with reconstruction

single hit predictions

cluster predictions

threshold applied,
ready for 3D tracking

3D tracks: P(track-like)
- use all projections

MC truth:
• track-like
• EM-like

EM/track in ProtoDUNE: CNN combined with reconstruction

EM component

EM component Hadronic component

Hadronic component

pions, protons
…. MC
--- reco

pions, reco
--- with SCE
--- no SCE

EM/track in LArIAT: test on real data

EM/track in neutrino events

EM component Hadronic component

EM component Hadronic component

re
co

re
co

MC MC

dual-phase 3x1x1 prototype data is waiting

• models were already prepared for dual-phase MC

• need to do the work on data… this is the target, not MC

 do MC-data overlay for most realism of noise physics week now
 investigate signal shape differences: back to GAN idea?

As for all high and low level pattern recognition cases:
 need to control nuisance parameters and feature differences in MC/data

Michel electron selection: see more on DUNE physics week

logP(decay vertex)

EM/track

Michel activity

Vertex location / classification

• decay / interation vertex ID used also for NDK work (Aaron)

• more vertex ID: EM shower vertex (Leigh)

https://indico.fnal.gov/event/15601/contribution/0/material/slides/0.pdf
https://indico.fnal.gov/event/15601/contribution/0/material/slides/0.pdf
https://indico.fnal.gov/event/15601/contribution/0/material/slides/0.pdf
https://indico.fnal.gov/event/15601/contribution/0/material/slides/0.pdf
https://indico.fnal.gov/event/15601/contribution/0/material/slides/0.pdf
https://indico.fnal.gov/event/15601/contribution/0/material/slides/0.pdf

Moving to technical issues…

• EM/track and Michel selection applied at all hit locations

• single CNN model, improvments from architecture/trainning
customization

• production mode needs really fast calculation

• few Michel examples, many EM/track per event

• majority of „easy” cases, difficult are less frequent but most
important to solve

• Vertex ID applied to points/hits in selected regions

• 1-to-few training examples per event

 speed: training, production

 training set optimization

 architecture optimization

data representation / generators

Usual workflow for CNN preparation

G4 sim, detsim, signal processing

(and any required reco)

LArSoft

Model prototyping, training, tests

Python, Keras API +Tensorflow backend

Load the graph, apply CNN

(model is fixed, „inference mode”)

LArSoft

save graph description,
model coefficients

does not need to be CNN/CVN

• graph needs only a simple I/O interface,

• straightforward to port to any framework

• one can mix even different backends: Caffe / TF
can read the sam format

Theano used previously, quite faster,
but no C++ API

(Theano + our old, simple API could handle „sequential” graph, single output layer only)

EM – track – none layer, multi-class
softmax / cross-entropy

Michel-or-not layer, binary
sigmoid / MSE

Fast learner!
EM/track regularizes the
Michel output

Simple and work very well,
but slower training

Graphs

Graphs

 description of CNN ideally suited for parallelization:

-- input / output data as a tensors

-- batch of input tensors processed in parallel with a single graph

 calculations decomposed into a basic building blocks to profit from parallelization & vectorization

 TF and Keras toolkits provide API to handle complex graphs in a few lines, no need to see all details

 not for „if-else” heavy solutions

inputs

outputs

each input-output can be
calculated in parallel to others

operations inside graph
can run in parallel

single operation can be
parallelized (e.g. kernel applied

to every element in tensor)

CPU/GPU can apply simple
math instructions to multiple

operands

graph

op

op

op

op

op

import tensorflow as tf

with tf.Session() as sess:

 a = tf.Variable(5.0, name='a')

 b = tf.Variable(6.0, name='b')

 c = tf.multiply(a, b, name="c")

 sess.run(tf.global_variables_initializer())

 print a.eval() # 5.0

 print b.eval() # 6.0

 print c.eval() # 30.0

 tf.train.write_graph(sess.graph_def,

 'models/', 'graph.pb', as_text=False)

main_input = Input(shape=(img_rows, img_cols, 1),

 name='main_input')

x = Conv2D(nb_filters1, (nb_conv1, nb_conv1),

 padding='valid', data_format='channels_last',

 activation=convactfn1)(main_input)

x = Dropout(drop1)(x)

x = Flatten()(x)

x = Dense(densesize1, activation=actfn1)(x)

x = Dropout(drop2)(x)

x = Dense(densesize2, activation=actfn2)(x)

x = Dropout(drop2)(x)

em_trk_none = Dense(3, activation='softmax‚,

 name='em_trk_none_netout')(x)

michel = Dense(1, activation='sigmoid',

 name='michel_netout')(x)

sgd = SGD(lr=0.01, decay=1e-4, momentum=0.9, nesterov=True)

model = Model(inputs=[main_input],

 outputs=[em_trk_none, michel])

model.compile(optimizer=sgd,

 loss={'em_trk_none_netout': 'categorical_crossentropy',

 'michel_netout': 'mean_squared_error'},

 loss_weights={'em_trk_none_netout': 0.1,

 'michel_netout': 1.})

Can describe every custom
detail with TF:

…but usually use Keras as a high
level API for TF:

C++ API for TF allows building graphs on the fly, but
what we really need is loading graphs worked out in
Python: this is available now in UPS.

Graphs

Only this part is saved for the inference mode,
the grey rest is needed during the training.

Can expand a blocks of nodes:
CNN layers are easy to create with
API, but you may want to see your
own constructs details.

Graphs

EM-like selection ROC Michel-like selection ROC

old model
new, 1 x conv-2D
2 x conv-2D

old model
new, 1 x conv-2D
recent model from Aidan

Performance with adjusted architecture

Running on the grid

• old code: almost no parallelization, little vectorization

• Tensorflow – extremely flexible parallelization, code optimized, but: still cannot use full vectorization
(no AVX on some grid CPUs)

• need convenient mechanism to select code that fits hardware: old CPU / GPU / KNL / …

• parallelization / vectorization may be very dependent on backend: target also Caffe / TF selection

old model / code same size model / new code / two rounds of grid submissions

Simple c++ implementation of CNN, 4 CPU

===

TimeTracker printout (sec) Avg

===

Full event 1029.31

source:RootInput(read) 0.00172957

reco:rns:RandomNumberSaver 0.000820898

reco:caldata:DataPrepModule 7.14426

reco:gaushit:GausHitFinder 65.1564

reco:hitfd:HitFinder35t 107.047

reco:linecluster:LineCluster 1.5267

reco:emtrkmichelid:EmTrackMichelId 606.107

reco:pmtrack:PMAlgTrackMaker (beam+cosmics) 152.281

reco:pandora:StandardPandora (only cosmics) 72.9939

reco:TriggerResults:TriggerResultInserter 0.000111717

end_path:out1:RootOutput 2.9803e-05

end_path:out1:RootOutput(write) 17.0451

===

MemoryTracker summary (base-10 MB units used)

 Peak virtual memory usage (VmPeak) : 3884.21 MB

 Peak resident set size usage (VmHWM): 2863.01 MB

===

TimeReport ---------- Time Summary ---[sec]----

TimeReport CPU = 1321.828051 Real = 1037.665077

Tensorflow, using AVX, 4 CPU

===

TimeTracker printout (sec) Avg

===

Full event 486.511

source:RootInput(read) 0.00148615

reco:rns:RandomNumberSaver 0.000784336

reco:caldata:DataPrepModule 7.04595

reco:gaushit:GausHitFinder 65.6555

reco:hitfd:HitFinder35t 115.82

reco:linecluster:LineCluster 1.75606

reco:emtrkmichelid:EmTrackMichelId 50.716

reco:pmtrack:PMAlgTrackMaker 152.856

reco:pandora:StandardPandora 76.3032

reco:TriggerResults:TriggerResultInserter 0.000106771

end_path:out1:RootOutput 4.4151e-05

end_path:out1:RootOutput(write) 16.3541

===

MemoryTracker summary (base-10 MB units used)

 Peak virtual memory usage (VmPeak) : 4463.87 MB

 Peak resident set size usage (VmHWM): 3052.71 MB

===

TimeReport ---------- Time Summary ---[sec]----

TimeReport CPU = 620.489671 Real = 494.307292

On a ProtoDUNE full event: 6 APA’s, beam event + ~60-70 cosmic tracks

 CNN runs 10x faster, no longer bottleneck, but it is not the only thing in the reco chain

 parallelization has an overhead, likely allocating 2 or 4 CPU on the fermigrid should be optimal

 the larger batch of inputs, the faster processing, …and more memory needed

 optimally, feature maps should be done once / event, not redone for each patch…

Upcoming work: more brain power on training data handling

1. EM / track / Michel: simple workflow enough

 ADC / PDG maps in ROOT histograms, then „patch” preparation for the training

 training set composition „optimized” manually (otherwise heavy weapon for a simple task)

 straigt-forward data augmentation (flips only)

2. More towards CNN/reco combined: disambiguation and segmentation, work waiting for the
Ph.D. student

 ADC / TrackID maps in ROOT histograms, will need multiple resolution „glimps”

 training batches should be generated o the fly

 likely will go for automated opimization of training set

3. primary vertex location: main focus now due to the DUNE TDR

 ADC maps in ROOT histograms, 1 byte / pixel, ~150-180 kB / DUNE LBL n event – ready

 multiple resolution „glimps”, recurrent CNN: batches MUST be generated o the fly – ready

 automated opimization of training batches – ongoing

 NOTE non-trivial issues with the wire wrapping and „global image” – done in a hacky way

Wrapped wires can be very annoying…

Training data representation

For practical work:

 need >1M events in memory, can swap from disk occasionally

 need fast unpacking for the batch generation purposes

 no strong downsampling (not below the detector effective resolution)

Items to try today?

 load Caffe model with TF/Keras, …or vice versa and include Caffe backend in
EM/track inference

 modify CVN for 2-view dual-phase neutrinos

 look what event formats others are using

